
Accelerating the TigerVNC Encoder
(For Fun and Profit)

Version 1d, 3/9/2012 -- The VirtualGL Project

This report and all associated illustrations are licensed under the Creative
Commons Attribution 3.0 License. Any works that contain material derived
from this document must cite The VirtualGL Project as the source of the material
and list the current URL for the VirtualGL web site.

1 Introduction

The report “From Tight to Turbo and Back Again: Designing a Better Encoding Method for
TurboVNC” revisits a study conducted in 2008, during which a procedure was established for
analyzing the performance of various VNC encoding methods at the low level. The goal of this study
was to improve the compression efficiency of TurboVNC without sacrificing any of its performance.
The procedure involved benchmarking a particular VNC encoder using RFB protocol captures from 20
different workloads, both 2D and 3D. In that report, the almost pure high-speed JPEG encoder from
TurboVNC 0.4 served as a performance target, whereas TightVNC 1.3.9 served as a compression
efficiency target. Ultimately, an encoding method was designed which, for the datasets of interest,
performed as good as or better than TurboVNC 0.4 in all cases and approached the compression ratio of
TightVNC 1.3.9 in many cases.

Since the introduction of TigerVNC in 2009, there has been a desire to perform the same analysis on
the TigerVNC encoder. It has been known since that time that TigerVNC's high-level performance was
significantly slower than that of TurboVNC, but the reasons behind this were unknown, since the two
solutions shared the same high-speed JPEG codec (libjpeg-turbo.)

2 Tools and Methodology

The tools, equipment, and methodology used in this report were identical to those used in the afore-
mentioned “Tight to Turbo” report, which is included by reference. However, since the amount of data
obtained for this report was significantly greater than the amount of data obtained for the previous
report, the data in this report is discussed in relative rather than absolute terms.

The goal of this research was to produce a series of modes in TigerVNC which duplicated both the
CPU time and compression ratio of the “Tight + Perceptually Lossless JPEG”, “Tight + Medium
Quality JPEG”, “Lossless Tight”, and “Lossless Tight + Zlib” modes in TurboVNC, all without
compromising the levels of performance that users already enjoyed with TigerVNC 1.1. A secondary
goal was to explore the usefulness of the various compression levels in TigerVNC.

1

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf
http://www.virtualgl.org/pmwiki/uploads/About/tighttoturbo.pdf
http://creativecommons.org/licenses/by/3.0/us/

If, for any particular dataset, a change to a particular mode produced worse compression efficiency or
throughput than the same mode in TigerVNC 1.1, a method for restoring the performance of TigerVNC
1.1 for that dataset and mode is discussed.

2.1 Metrics

Two metrics are used in this report: “Relative Compression Ratio” and “Speedup”:

Relative Compression Ratio=
Compression RatioNew

Compression RatioBaseline

Speedup=
CPU TimeBaseline

CPU TimeNew

“Speedup” is the same as “relative throughput”. In both cases, a value of 1.0 indicates that the new
version was equivalent to the baseline. Values < 1.0 indicate that the new version was worse than the
baseline, and values > 1.0 indicate that the new version was better than the baseline.

3 Results

3.1 Perceptually Lossless JPEG

To establish a baseline, the TurboVNC encoder was benchmarked using the compare-encodings
benchmark with the canonical set of 20 RFB session captures. The settings for “Tight + Perceptually
Lossless JPEG” were used, except that the JPEG quality was dialed down to 92 in order to match the
JPEG Quality Level 8 setting in TigerVNC. Next, the unmodified TigerVNC 1.1 encoder was
benchmarked using JPEG Quality Level 8 and Compression Levels 1, 2, 3, 6, and 9.

TigerVNC 1.1 vs. TurboVNC: 4:4:4 Subsampling, JPEG Quality = 92

Dataset Relative Compression Ratio
(vs. TurboVNC Baseline)

Speedup
(vs. TurboVNC Baseline)

TigerVNC 1.1
(Compression Level 1)

Min: 0.505
Avg: 0.903
Max: 1.91

Min: 0.417
Avg: 0.709
Max: 0.911

TigerVNC 1.1
(Compression Level 2)

Min: 0.696
Avg: 1.05
Max: 1.84

Min: 0.398
Avg: 0.732
Max: 0.937

TigerVNC 1.1
(Compression Level 3)

Min: 0.847
Avg: 1.15
Max: 1.85

Min: 0.366
Avg: 0.652
Max: 0.886

2

Dataset Relative Compression Ratio
(vs. TurboVNC Baseline)

Speedup
(vs. TurboVNC Baseline)

TigerVNC 1.1
(Compression Level 6)

Min: 1.02
Avg: 1.20
Max: 1.97

Min: 0.244
Avg: 0.417
Max: 0.853

TigerVNC 1.1
(Compression Level 9)

Min: 0.965
Avg: 1.16
Max: 1.96

Min: 0.0320
Avg: 0.0949
Max: 0.676

The default compression level in TigerVNC 1.1 (level 6) uses a relatively high amount of Zlib
compression, and this proved to be one of the factors in TigerVNC 1.1's lackluster performance relative
to TurboVNC. Reducing the compression level improved the situation, but still the best relative
performance that could be achieved was with Compression Level 2. Even that mode compressed as
much as 30% less efficiently and was as much as 60% slower than TurboVNC.

Also note that, in TigerVNC 1.1, compression levels higher than 6 were utterly useless in conjunction
with perceptually lossless JPEG. Switching from Compression Level 6 to Compression Level 9
actually reduced the compression ratio of almost all of the datasets, and it increased the average CPU
time by a factor of 4.4. The jump from Compression Level 3 to Compression Level 6 was of only
marginal usefulness, increasing the compression ratio by an average of only 4.3% in exchange for an
average 56% increase in CPU time.

The first step in diagnosing the performance disparity between TurboVNC and TigerVNC was to
examine the low-level behavior of the two encoders. Four major differences were discovered:

1. If the connected viewer supports “last rectangle encoding” (a TightVNC extension that allows
the server to send an arbitrary number of rectangles in a framebuffer update), then TurboVNC
and TightVNC 1.3.x will attempt to identify areas of solid color in a rectangle prior to dividing
it into subrectangles. Thus, the areas of solid color will dictate how the rectangle is divided
(hence the need for last rectangle encoding, since it's impossible to predict how many
subrectangles will be generated without actually performing the computation.) TigerVNC did
not support last rectangle encoding, and thus it divided the rectangle into subrectangles first,
then it determined whether each subrectangle was solid or not. This could lead to situations in
which large areas of solid color are sent using indexed color or JPEG encoding, simply because
there are tiny areas of high color depth at their edges. It was suspected that this was one of the
factors limiting the performance of TigerVNC 1.1.

2. As with TightVNC, TigerVNC computed the palette threshold based on the size of the
subrectangle, but unlike TightVNC, TigerVNC would then clamp the threshold to a value of 96
if JPEG was enabled. TurboVNC instead sets the palette threshold to a static value (24)
regardless of the subrectangle size. It was suspected that this difference in behavior might have
been causing TigerVNC's mix of JPEG and indexed color subrectangles to be weighted too
heavily in favor of indexed color.

3. As with TightVNC, the maximum subrectangle size and width that TigerVNC would encode
varied based on the compression level. It was suspected that the use of small subrectangles was

3

increasing the encoding overhead for the lower compression levels.

4. TigerVNC did not send JPEG subrectangles if the subrectangle size was less than 1024 pixels or
if either of the subrectangle dimensions were less than 8. This was suspected of throwing off
the balance between JPEG and indexed color subrectangles, since some subrectangles can be
long and narrow but still have enough pixels to compress efficiently using JPEG.

Rather than spend a tremendous amount of time benchmarking every possible permutation of the
above, it was decided instead to attempt to exactly duplicate the output of the TurboVNC encoder and
see where it stood relative to TigerVNC 1.1. This involved:

• Porting the solid subrectangle pre-computation code from the TurboVNC encoder to the
TigerVNC encoder (this required implementing last rectangle encoding as well)

• Tweaking the TigerVNC encoder such that it used a static rather than a variable palette
threshold whenever JPEG encoding was enabled

• Tweaking the TigerVNC encoder such that it used a maximum subrectangle size of 65,536 and
a maximum subrectangle width of 2048 for all compression levels

• Tweaking the TigerVNC encoder such that it did not limit the size of subrectangles that were
candidates for JPEG encoding

• A great deal of debugging

Once it was verified that the precise subrectangle mix from TurboVNC could be duplicated for all
datasets, the benchmarks were re-run using the new encoder. The new numbers revealed that some
datasets were still falling short of the TurboVNC performance target. One reason for this was
discovered to be the fact that, when encoding a solid subrectangle, the TigerVNC encoder would
perform pixel translation on all of the pixels in the subrectangle, even though only the first one was
relevant. This became a more visible phenomenon because the new encoder was sending solid
subrectangles much more frequently than the old encoder did. A second reason for the performance lag
was that the JPEG encoder was using too small of a buffer and was adding an extra, unneeded buffer
copy. The JPEG encoder was moved into a separate class and re-designed so that it avoids the extra
buffer copy, and the encoding buffer was increased in size to 128k to avoid the overhead of buffer re-
allocation.

The resulting encoder, hereafter referred to as “TigerVNC 1.2”, was then compared to the TurboVNC
and TigerVNC 1.1 encoders:

4

TigerVNC 1.2 vs. TurboVNC and TigerVNC 1.2 vs. TigerVNC 1.1:
4:4:4 Subsampling, JPEG Quality = 92

Dataset Relative
Compression

Ratio
(vs. TurboVNC

Baseline)

Speedup
(vs. TurboVNC

Baseline)

 Relative
Compression

Ratio
(vs. Same

Compression Level in
TigerVNC 1.1)

Speedup
(vs. Same

Compression Level in
TigerVNC 1.1)

TigerVNC 1.2
(Compression
Level 1)

Min: 0.989
Avg: 1.00
Max: 1.02

Min: 0.968
Avg: 1.06
Max: 1.16

Min: 0.525
Avg: 1.11
Max: 1.98

Min: 1.22
Avg: 1.49
Max: 2.33

TigerVNC 1.2
(Compression
Level 2)

Min: 1.00
Avg: 1.17
Max: 1.84

Min: 0.707
Avg: 0.880
Max: 1.07

Min: 0.839
Avg: 1.11
Max: 1.68

Min: 1.05
Avg: 1.27
Max: 1.73

TigerVNC 1.2
(Compression
Level 3)

Min: 1.00
Avg: 1.18
Max: 1.92

Min: 0.555
Avg: 0.756
Max: 0.989

Min: 0.896
Avg: 1.03
Max: 1.48

Min: 1.05
Avg: 1.23
Max: 1.58

TigerVNC 1.2
(Compression
Level 6)

Min: 1.00
Avg: 1.19
Max: 1.95

Min: 0.220
Avg: 0.451
Max: 0.973

Min: 0.927
Avg: 0.994
Max: 1.22

Min: 0.970
Avg: 1.14
Max: 1.71

TigerVNC 1.2
(Compression
Level 9)

Min: 1.00
Avg: 1.20
Max: 1.96

Min: 0.0274
Avg: 0.0917
Max: 0.910

Min: 0.921
Avg: 1.03
Max: 1.25

Min: 0.866
Avg: 1.02
Max: 1.85

One note about this chart: Since TurboVNC always uses Zlib Compression Level 1 with JPEG
encoding, the left two columns allow one to gauge the effectiveness of increasing the level of Zlib
compression in TigerVNC 1.2, since the TurboVNC baseline was the same for those tests. The right
two columns represent an “apples to apples” regression test, in which each compression level from
TigerVNC 1.2 was compared with the equivalent setting in TigerVNC 1.1 (blue cells are apples-to-
apples comparisons.)

With Compression Level 1, the palette threshold of 24 from TurboVNC was maintained. It was known
from the prior study that increasing this palette threshold to 96 would shift the balance more toward a
higher compression ratio and lower throughput, and experimentation with the modified TigerVNC
encoder confirmed this. Thus, a palette threshold of 96 was used for compression levels greater than 1.

The first thing to note is that, to within a margin of 2%, the new encoder with Compression Level 1
produced identical output to the TurboVNC encoder. The throughput at Compression Level 1 was
centered at 6% faster than the TurboVNC baseline, and the datasets that made heavy use of indexed
color encoding ran as much as 16% faster than they did under TurboVNC.

Relative to TigerVNC 1.1, the throughput was better across the board. At the lower compression
levels, certain datasets did not compress quite as well as they did under TigerVNC 1.1. In almost all of
those cases, however, simply increasing the compression level by one notch restored the performance

5

and compression ratio that those datasets achieved under TigerVNC 1.1. The exception to this was the
CATIA dataset. This dataset has quite a bit of high-frequency content, which compresses poorly with
JPEG, but it also has a somewhat high color depth, so the subrectangles it generates don't often fall
below the palette threshold of 24. Boosting the compression level to 2 improved the compression ratio
for this dataset dramatically (from 52% of the TigerVNC 1.1 baseline to 80%), but in order to restore
the compression ratio that this dataset achieved under TigerVNC 1.1 (while still retaining similar levels
of performance), it was necessary to turn off JPEG encoding (see Section 3.3 for a discussion of that
mode.)

Another thing to note is that, in almost all cases, compression levels higher than 2 are useless with the
new TigerVNC 1.2 encoder. There were virtually no gains in compression ratio beyond this level.

3.2 Medium Quality JPEG

The analysis was repeated for Medium Quality JPEG, using a JPEG quality level of 77 with 4:2:2
subsampling in TurboVNC and the equivalent (JPEG Quality Level 5) in the TigerVNC 1.1 and 1.2
encoders. The results appear below.

TigerVNC 1.1 vs. TurboVNC: 4:2:2 Subsampling, JPEG Quality = 77

Dataset Relative Compression Ratio
(vs. TurboVNC Baseline)

Speedup
(vs. TurboVNC Baseline)

TigerVNC 1.1
(Compression Level 1)

Min: 0.353
Avg: 0.646
Max: 1.26

Min: 0.320
Avg: 0.612
Max: 0.916

TigerVNC 1.1
(Compression Level 2)

Min: 0.541
Avg: 0.834
Max: 1.37

Min: 0.315
Avg: 0.642
Max: 0.940

TigerVNC 1.1
(Compression Level 3)

Min: 0.725
Avg: 1.00
Max: 1.43

Min: 0.294
Avg: 0.565
Max: 0.879

TigerVNC 1.1
(Compression Level 6)

Min: 0.984
Avg: 1.17
Max: 1.62

Min: 0.225
Avg: 0.358
Max: 0.792

TigerVNC 1.1
(Compression Level 9)

Min: 0.959
Avg: 1.15
Max: 1.63

Min: 0.0288
Avg: 0.0756
Max: 0.575

Here, as with the previous baseline tests, none of the modes could come close to matching TurboVNC
on both compression ratio and throughput, and compression levels higher than 6 proved to be useless.

The tests were then re-run with the new TigerVNC 1.2 encoder.

6

TigerVNC 1.2 vs. TurboVNC and TigerVNC 1.2 vs. TigerVNC 1.1:
4:2:2 Subsampling, JPEG Quality = 77

Dataset Relative
Compression

Ratio
(vs. TurboVNC

Baseline)

Speedup
(vs. TurboVNC

Baseline)

 Relative
Compression

Ratio
(vs. Same

Compression Level in
TigerVNC 1.1)

Speedup
(vs. Same

Compression Level in
TigerVNC 1.1)

TigerVNC 1.2
(Compression
Level 1)

Min: 0.990
Avg: 1.00
Max: 1.01

Min: 0.924
Avg: 1.06
Max: 1.22

Min: 0.795
Avg: 1.55
Max: 2.83

Min: 1.27
Avg: 1.74
Max: 3.19

TigerVNC 1.2
(Compression
Level 2)

Min: 1.00
Avg: 1.12
Max: 1.45

Min: 0.601
Avg: 0.871
Max: 1.14

Min: 0.998
Avg: 1.35
Max: 1.86

Min: 1.09
Avg: 1.36
Max: 1.91

TigerVNC 1.2
(Compression
Level 3)

Min: 1.00
Avg: 1.15
Max: 1.60

Min: 0.504
Avg: 0.724
Max: 1.01

Min: 0.980
Avg: 1.15
Max: 1.48

Min: 1.05
Avg: 1.28
Max: 1.71

TigerVNC 1.2
(Compression
Level 6)

Min: 1.00
Avg: 1.17
Max: 1.78

Min: 0.234
Avg: 0.405
Max: 0.905

Min: 0.943
Avg: 1.00
Max: 1.12

Min: 0.969
Avg: 1.13
Max: 1.72

TigerVNC 1.2
(Compression
Level 9)

Min: 1.00
Avg: 1.18
Max: 1.81

Min: 0.0285
Avg: 0.0769
Max: 0.809

Min: 0.934
Avg: 1.03
Max: 1.13

Min: 0.849
Avg: 1.02
Max: 1.88

The results here are similar to those in the previous section. TigerVNC 1.2 with Compression Level 1
now performed almost identically to TurboVNC, and it was faster on the datasets that were encoded
using a great deal of indexed color subrectangles.

Relative to TigerVNC 1.1, only with Compression Level 1 did any datasets compress significantly less
efficiently. It was our old friend CATIA, and bumping the compression level up to 2 restored the
performance that that dataset achieved under TigerVNC 1.1. The throughput relative to TigerVNC 1.1
was better across the board.

3.3 Lossless

The “Tight to Turbo” report primarily discussed the design of the JPEG-based encoding methods in
TurboVNC 0.5, but as part of the same study that was conducted in 2008, two additional encoding
methods were designed: “Lossless Tight” and “Lossless Tight + Zlib.” Lossless Tight is basically the
“Lazy Tight” encoding method with no Zlib compression or smoothness detection. Thus, the only form
of compression it provides is through indexed color encoding of subrectangles with low numbers of
unique colors. The main raison d'etre of Lossless Tight is that it uses less CPU time than Hextile but
still provides a compression ratio that is in the ballpark of the latter (around 4-5, on average.) Lossless
Tight + Zlib adds Zlib compression and is designed to provide more of a balance between CPU time
and compression ratio, so that it at least performs reasonably well on wide-area network connections

7

(Lossless Tight + Zlib is the encoding method used by TurboVNC's lossless refresh feature.)

The “Lossless Tight” encoding methods use raw subrectangles instead of JPEG, and thus the palette
threshold has to be set such that indexed color subrectangles are sent more often than they would be if
JPEG was enabled. Experiments in 2008, some of which were repeated during the course of gathering
data for this report, showed that maintaining the maximum color divisors from the original TightVNC
encoder worked better than using a hard-coded palette threshold.

TigerVNC 1.1, with Compression Level 0 and JPEG disabled, was compared to TurboVNC's “Lossless
Tight” encoding method. For all other compression levels, TigerVNC 1.1 was compared to
TurboVNC's “Lossless Tight + Zlib” encoding method. As with the previous charts, the blue cells
indicate apples-to-apples comparisons, whereas the other tests are meant to measure the usefulness of
increasing the level of Zlib compression against a static baseline.

TigerVNC 1.1 vs. TurboVNC: Lossless

Dataset Relative Compression Ratio
(vs. TurboVNC Baseline)

Speedup
(vs. TurboVNC Baseline)

TigerVNC 1.1
(Compression Level 0)

Min: 0.611
Avg: 1.30
Max: 1.80

Min: 0.0826
Avg: 0.384
Max: 0.847

TigerVNC 1.1
(Compression Level 1)

Min: 0.381
Avg: 0.985
Max: 1.10

Min: 0.679
Avg: 0.852
Max: 1.04

TigerVNC 1.1
(Compression Level 2)

Min: 0.540
Avg: 1.03
Max: 1.13

Min: 0.748
Avg: 0.834
Max: 1.00

TigerVNC 1.1
(Compression Level 3)

Min: 0.555
Avg: 1.04
Max: 1.22

Min: 0.632
Avg: 0.760
Max: 0.867

TigerVNC 1.1
(Compression Level 6)

Min: 0.975
Avg: 1.06
Max: 1.60

Min: 0.292
Avg: 0.433
Max: 0.696

TigerVNC 1.1
(Compression Level 9)

Min: 0.985
Avg: 1.08
Max: 1.61

Min: 0.0457
Avg: 0.116
Max: 0.539

In this case, it was observed that compression levels greater than 2 were useless. The performance of
Compression Levels 0 and 1 was mixed. Some datasets compressed more efficiently with TigerVNC
1.1, but in most cases, its throughput relative to TurboVNC was significantly less.

Note that TurboVNC bypasses Zlib completely when using the Lossless Tight encoding method, so that
is one factor in the large disparity between its throughput and the throughput of TigerVNC 1.1 at
Compression Level 0. The reason that TurboVNC bypasses Zlib is that, even when using Zlib

8

Compression Level 0 (no compression), Zlib adds a significant amount of performance overhead.

TigerVNC 1.2 vs. TurboVNC and TigerVNC 1.2 vs. TigerVNC 1.1:
Lossless

Dataset Relative
Compression

Ratio
(vs. TurboVNC

Baseline)

Speedup
(vs. TurboVNC

Baseline)

 Relative
Compression

Ratio
(vs. Same

Compression Level in
TigerVNC 1.1)

Speedup
(vs. Same

Compression Level in
TigerVNC 1.1)

TigerVNC 1.2
(Compression
Level 0)

Min: 0.988
Avg: 0.999
Max: 1.00

Min: 0.0664
Avg: 0.334
Max: 1.00

Min: 0.554
Avg: 0.766
Max: 1.63

Min: 0.796
Avg: 0.869
Max: 1.26

TigerVNC 1.2
(Compression
Level 1)

Min: 0.991
Avg: 1.00
Max: 1.04

Min: 0.800
Avg: 0.996
Max: 1.36

Min: 0.912
Avg: 1.02
Max: 2.65

Min: 1.01
Avg: 1.17
Max: 2.00

TigerVNC 1.2
(Compression
Level 2)

Min: 1.01
Avg: 1.03
Max: 1.23

Min: 0.788
Avg: 0.909
Max: 1.27

Min: 0.924
Avg: 1.00
Max: 1.95

Min: 0.926
Avg: 1.09
Max: 1.56

TigerVNC 1.2
(Compression
Level 3)

Min: 1.01
Avg: 1.04
Max: 1.58

Min: 0.713
Avg: 0.842
Max: 1.05

Min: 0.930
Avg: 1.00
Max: 1.93

Min: 0.904
Avg: 1.11
Max: 1.57

TigerVNC 1.2
(Compression
Level 6)

Min: 0.985
Avg: 1.08
Max: 1.76

Min: 0.311
Avg: 0.497
Max: 0.733

Min: 0.995
Avg: 1.02
Max: 1.10

Min: 1.01
Avg: 1.15
Max: 1.67

TigerVNC 1.2
(Compression
Level 9)

Min: 0.986
Avg: 1.10
Max: 1.80

Min: 0.0459
Avg: 0.120
Max: 0.545

Min: 1.00
Avg: 1.02
Max: 1.12

Min: 0.915
Avg: 1.04
Max: 1.45

Compression Levels 0 and 1 now produced almost identical output to TurboVNC's Lossless Tight and
Lossless Tight + Zlib encoding methods (respectively.) Compression Level 0 fell considerably short of
the TurboVNC performance target because of the overhead of passing the uncompressed images
through Zlib. A possible future project would be to figure out how to enhance Zlib such that it could
pass through uncompressed data without overhead when using Zlib Compression Level 0. It would
also be straightforward to add TurboVNC's Zlib bypass feature to TigerVNC, but since that feature uses
an unauthorized extension to the RFB protocol, the former approach is cleaner. Then again, as CPUs
become faster, the relevance of the Lossless Tight encoding method may not be enough to be worthy of
additional effort.

Returning to the chart above, it should be noted that only very few datasets benefited from compression
levels higher than 1. Those datasets that benefited were the ones that were encoded using more
indexed color rectangles. Even these datasets experienced compression ratio gains of only 20-25%
when moving from Compression Level 1 to Compression Level 6, at the expense of losing 2/3 of their
throughput.

9

The only significant performance regressions of note were under Compression Level 0. Because this
mode really needs some form of Zlib bypass, its usefulness will be somewhat limited until/unless that
feature is implemented.

Compression Level 1 under the new encoder was shown to be an adequate replacement for “Lossless
Tight + Zlib”, and it can thus be used as the basis for the future implementations of a lossless refresh
feature in TigerVNC.

3.4 Conclusions and Recommendations

• In the new encoder, compression levels higher than 2 are of limited usefulness, and in no case,
either in the old or new encoder, could a compression level higher than 6 be shown to have any
benefit whatsoever.

◦ Recommendation 1: Set the default compression level to 1.

◦ Recommendation 2: Disallow levels higher than 6 from being selected in the GUI (they
could still be selected from the command line.)

◦ Recommendation 2: Implement a compression level slider or a dial in the TigerVNC
Viewer GUI which warns the user of the limited effectiveness of levels 4, 5, and 6, perhaps
using color coding (a green zone and a red zone, for instance.)

• The new encoder with JPEG enabled and Compression Level 1 produces similar output to
TurboVNC's JPEG-based encoding methods.

• The new encoder with JPEG disabled and Compression Level 1 produces similar output to
TurboVNC's Lossless Tight + Zlib encoding method.

• The new encoder with JPEG disabled and Compression Level 0 produces similar output to
TurboVNC's Lossless Tight encoding method, but the new mode in TigerVNC needs either a
Zlib bypass mechanism or optimizations to the Zlib library to achieve the same performance as
Lossless Tight. At the moment, the mode is of limited usefulness without those optimizations.
Feedback from the user community would be useful in ascertaining whether optimizing this
mode is desirable or whether Hextile and Raw are adequate.

10

	Accelerating the TigerVNC Encoder
(For Fun and Profit)
	1 Introduction
	2 Tools and Methodology
	2.1 Metrics

	3 Results
	3.1 Perceptually Lossless JPEG
	3.2 Medium Quality JPEG
	3.3 Lossless
	3.4 Conclusions and Recommendations

